
4.3 DATA STRUCTURE AND PARALLEL DECOMPOSITIONCONSIDERATIONS ON A FIBONACCI GRIDJohn G. Michalakes(1), R. James Purser(2), and Richard Swinbank(3)(1)Argonne National LaboratoryChicago, Illinois(2)NOAA/NCEP, General Sciences CorporationCamp Springs, Maryland(3)USRA, Data Assimilation O�ce, NASA/GSFCGreenbelt, Maryland1. INTRODUCTIONThe Fibonacci grid, proposed by Swinbank andPurser (1999), provides attractive properties forglobal numerical atmospheric prediction by o�er-ing an optimally homogeneous, geometrically regu-lar, and approximately isotropic discretization, with(as always) only the polar regions requiring specialnumerical treatment. It is a mathematical ideal-ization, applied to the sphere, of the multi-spiralpatterns often found in botanical structures, suchas in pine cones and sun
ower heads. Computa-tionally, it is natural to organize the domain intozones, in each of which the same pair (or possibly,triplet) of Fibonacci spirals dominate. But the fur-ther subdivision of such zones into tiles of a shapeand size suitable for distribution to the processors ofa massively parallel computer requires careful con-sideration if the subsequent spatial computationsalong the respective spirals, especially those com-putations (such as compact di�erencing schemes)that involve recursion, can be implemented in an ef-�cient, load-balanced manner without requiring ex-cessive amounts of inter-processor communications.Even when traditional low-order explicit methodsare used, care must still be taken.We show how certain simple properties of theFibonacci sequence (whose numbers prescribe themultiplicities of the members of the successivefamilies of spirals that make up the grid) maybe exploited in the subdivision of grid zones intoarrangements of triangular grid tiles, each withtwo sides coincident with grid lines and a ragged\hypotenuse" approximately aligned east{west.2. FIBONACCI AND LUCAS NUMBERSThe Fibonacci sequence, Fn, and the relatedLucas sequence, Ln, (e.g., Conway and Guy, 1996)Corresponding author address: John Micha-lakes, NCAR/MMM, 3450 Mitchell Lane, Boulder,CO 80301

for n � 0, comprise the sets (0; 1; 1; 2; 3; 5; 8; : : :)and (2; 1; 3; 4; 7; 11; 18; : : :), respectively. In eachsequence, each number is the sum of the two thatprecede it. A pair of simple formulae, valid also fornegative integers, relate Fn and Ln to the goldenratio, � = (p5 + 1)=2:Fn = [�n � (��)�n]=p5; (1)Ln = �n + (��)�n: (2)From the generic identity implied by (1) and (2):FnLn+p = F2n+p � (�)nFp; (3)we see that, FnLn = F2n; (4)and, FnLn�1 = (F2n�1 � 1; n even;F2n�1 + 1; n odd. (5)As we show below, these results are particularlyuseful for tackling the problem of achieving asytematic domain decomposition of the Fibonaccigrid.3. DOMAIN DECOMPOSITIONAs discussed in Swinbank and Purser (1999),the natural quadrilateral computational grid at agiven latitude is formed by the mutual intersectionsof two familes of spirals associated with the twoconsecutive Fibonacci numbers that quantify thespirals in each family. Since the index of one ofthese Fibonacci numbers, say F2n, must be even,it is exactly factorable according to (4); thus, thiszone of the grid may be evenly subdivided into Fnoblique stripes containing Ln spirals each. Thecomplementary grid family of odd index, F2n�1,almost factorizes into Fn transverse stripes ofLn�1, except for a \dislocation" of one grid unit
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F9F8Figure 1. Domain decomposition into triangular tiles of a (southern) circumpolar region of the Fibonacci gridshown in Mercator projection. The representative spirals labeled, \F8" and \F9", belong to the families containingF8 = 21 and F9 = 34 members respectively. Note that, for each zone, there is a dual to the decomposition shown, inwhich the roles of the Fibonacci and Lucas numbers are interchanged.accumulated in a circuit once around the zone. Itis possible to align these dislocations along onecommon spiral of index F2n. Then, by bisectingthe resulting approximately \golden" rectangles bytheir east-west diagonals, we achieve the desiredtiling of this zone by triangles, leaving no gaps oroverlaps. From one zone to the next, it is no longerpossible to ensure a seemless join but, by arranginga slender overlap in latitude, we ensure that eachregion of the global grid is covered by our tiling.To illustrate the kind of pattern obtained,�g. 1 shows the decomposition, as it appears inthe conformal Mercator projection, of a portionof the idealized planar version of this grid (themost southerly 30 points are omitted to keepthe paper short). In this schematic depiction,each zone contains only a single \course" oftriangle-pairs; in practice, the broad equatorial andmidlatitude grid zones, accounting for the bulk ofthe numerical computations, would each containseveral courses of identical tile-pairs of the largestdimensions (and therefore the most e�cient inter-processor communications). Towards the poles,both the numbers and sizes of the tiles in each zonebecome progressively smaller, so that e�cient loadbalancing would require, near the poles, a muchlarger ratio of tiles per processor than near theequator; at su�ciently large latitudes, entire zoneswould be accommodated in each processor, and theindividual tiles could be dispensed with.4. DISCUSSION AND CONCLUSIONSWe have provided an outline of a genericmethod of decomposing a Fibonacci grid into

smaller units for use in massively parallel computerarchitectures. The most striking feature of thisdecomposition is that the elementary tiles aretriangular (but such that pairs of them can alwaysbe stored in regular rectangular arrays, whichsimpli�es the coding).The application of general recursive numeri-cal procedures (e.g., compact di�erencing) alwayspresents a special di�culty in the context of dis-tributed domains, and the apparent extra irregu-larity incurred by a triangular tiling might suggestthat this problem is rendered intractable. However,the recursive operations we encounter on an inher-ently regular grid can be invariably represented withconstant coe�cents, and we �nd that these pro-cesses can be accommodated e�ciently even whenthe lengths of segments in each tile are uneven.5. ACKNOWLEDGMENTSThis work was supported by the Mathemati-cal, Information, and Computational Sciences Di-vision subprogram of the O�ce of Advanced Sci-enti�c Computing Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38. RS wassupported by NASA through USRA contract NAS5-98181. Dr Joe Klemp helped with TeX problems.REFERENCESConway, J. H., and R. K. Guy, 1996: The book ofnumbers, Copernicus, New York. 310pp.Swinbank, R., and R. J. Purser, 1999: Fibonaccigrids. 13th Conference on Numerical WeatherPrediction, AMS (this volume).


